ЛЕНТА

Наноколлайдеры подтвердили существование энионов

H. Bartolomei, et al. / Science, 2020

Французские физики продемонстрировали энионную статистику при столкновении квазичастиц в двумерном электронном газе с помощью крошечных коллайдеров. Для этого исследователи изучили корреляции тока на квантовом точечном контакте, на который излучались два потока квазичастиц. Представленный эксперимент является первым прямым доказательством существования энионов. Работа опубликована в журнале Science.

В знакомом нам трехмерном пространстве все элементарные взаимодействия можно разделить на две категории, в зависимости от изменения свойств системы при перестановке двух частиц: бозонные и фермионные. В то время как волновая функция бозонной системы не меняет свою фазу при перестановке частиц, волновая функция фермионной системы изменяет фазу на π. Динамика фаз приводит к тому, что бозоны группируются в одном состоянии, а фермионы, напротив, стараются разгруппироваться. Например, эффект Хонга-У-Манделя, который имеет важное значение для работ по созданию квантового компьютера и сетей связи с квантовой криптографией, основывается на бозонных свойствах света группироваться, а принцип запрета Паули, наоборот, базируется на фермионных антигруппировочных свойствах электронов.

В двумерных системах изменение фазы может отличатся от 0 и π, что означается существование другого типа частиц, называемый энионами, которые в свою очередь обладают дробной статистикой. Энионы представляют собой обобщение понятий фермион и бозон и представляют большой интерес для топологических состояний вещества. К сожалению, обнаружить дробную статистику энионов очень сложно, и до сих пор были представлены лишь косвенные подтверждения.

Группа физиков из Франции под руководством Гвендаля Фива (Gwendal Fève) провела столкновения квазичастиц, которые, предположительно, являются энионами, и измерили их статистику. Эксперимент показал дробную статистику, что является прямым подтверждением того, что изучаемые квазичастицы — энионы.

Схема эксперимента

H. Bartolomei, et al. / Science, 2020

Поделиться

В качестве платформы для исследования энионов физики выбрали квантовые проводники с двумерным электронным газом GaAs/AlGaAS. Однако для осуществления столкновения квазичастиц в таких системах необходимо реализовать излучатель, рассеиватель, а также поддерживать баллистический транспорт частиц. В качестве излучателей и рассеивателя физики использовали квантовые точечные контакты: два контакта использовались как Пуассоновский источник энионов, которые затем сталкиваются на третьем квантовом точечном контакте. Для поддержания баллистического транспорта исследователи приложили к электронному газу сильное магнитном поле в 13 тесла, которое обеспечивает низкую электронную температуру.

Фотография образца с держателем

H. Bartolomei, et al. / Science, 2020

Поделиться

Дробная статистика сталкивающихся квазичастиц была выявлена путем измерения корреляций тока, снятом с рассеивателя. Затем из корреляций тока был посчитан фактор Фано, который определяется набором фазы при столкновении энионов — в данном эксперименте аккумуляция фазы составила π/3.

Измерение фактора Фано при столкновении анионов

H. Bartolomei, et al. / Science, 2020

Поделиться

Больше про бозоны, фермионы и энионы вы можете прочитать в нашем материале «Квантовая азбука».

Михаил Перельштейн

источник

Похожие статьи

Добавить комментарий

Ваш адрес email не будет опубликован.

Кнопка «Наверх»
Do NOT follow this link or you will be banned from the site!
Установите приложение MEGANEWS на Google Play
УСТАНОВИТЬ
Закрыть
Закрыть

Обнаружен Adblock

Поддержите нас, пожалуйста, отключив блокировку рекламы.